
Comparing Objects
• boolean result = obj1.equals(obj2);


• int diff = obj1.compareTo(obj2);


• int diff = c.compare(obj1, obj2);

• Used in Collections



obj1.equals(obj2)
• The boolean method equals comes from the class 

Object:

• Object’s equals is not very useful: compares addresses 
of objects


• Programmers often override equals in their classes

 public boolean equals(Object other)

 { ... }



obj1.equals(obj2) (cont)
public class Coordinate {

 private int row, col;

 ...


 public boolean equals(Object other) {

	 	 if (other != null && 

            other instanceof Coordinate &&

	 	 	    row == ((Coordinate)other).row && 

            col == ((Coordinate)other).col )

	 	    return true;


	 	 return false;

 }

}



obj1.equals(obj2)
• equals is called polymorphically from library 

methods, such as ArrayList’s contains or 
indexOf ⎯ that is why we have to properly 
override Object’s equals.


• The equals method is properly defined in 
String, Integer, Double, etc.



obj1.compareTo(obj2)
• compareTo is an abstract method defined in the 

java.util.Comparable<T> interface:

• Returns a positive integer if this is “greater than” other, 
a negative integer if this is “less than” other, zero if 
they are “equal.”

 public int compareTo (T other);

T is the data

type parameter

Sort of like (this - other)



public class Element implements Comparable<Element> {


 private double mass;  // atomic mass

 ...


 public int compareTo(Element other) {

    // accurate to 3 decimal points

    int iMass = (int)(mass * 1000);

    int iOther = (int)(other.mass * 1000);

    return iMass - iOther;

 }

 public boolean equals(Object other) {

     return other instanceof Element &&

            compareTo((Element)other) == 0;

 }

}

obj1.compareTo(obj2) (cont)

equals is not 
required by 

Comparable, but 
it is a good idea 
to provide it and 

make it agree 
with compareTo



• compareTo is called polymorphically from 
library methods.


• Objects of classes that implement 
Comparable are called “comparable”.


• Strings, Integers, Doubles are comparable.

obj1.compareTo(obj2) (cont)



compare(obj1, obj2)
• compare is an abstract method defined in the 

java.util.Comparator<T> interface:

• Returns a positive integer if obj1 is “greater than” obj2, 
a negative integer if obj1 is “less than” obj2, zero if they 
are “equal.”

 public int compare (T obj1, T obj2);

T is the data

type parameter

Sort of like (obj1 - obj2)



public class PetComparatorByName

                         implements Comparator<Pet>

{

   ...

   public int compare (Pet pet1,  Pet pet2)

   {

       return pet1.getName().

                 compareTo(pet2.getName());

   }

}

compare(obj1, obj2) (cont)

• A programmer can define different comparators to be 
used in different situations.


• compare is called from library methods such as 
    Arrays.sort(T[] arr, Comparator<T> c)  
(or from your own methods that take a comparator 
object as a parameter


